Zou, Yichao Wu, Marc Redmile-Gordon, Dengjun Wang, JunLiu, Qiaoyun Huang, Peng Cai. Influence of surface coatings on the adhesion of Shewanella oneidensis MR-1 to hematite, Journal of Colloid and Interface Science, Available online 11 November 2021, In Press, Journal Pre-proof.
Abstract
The adhesion of dissimilatory iron reducing bacteria (DIRB) to iron oxides is an important process to initiate direct extracellular electron transfer. Iron oxides in natural environments are often coated by organic matter or silica (SiO2) which alters their surface physicochemical properties. To investigate the influence of these surface coatings, we characterized the dynamic adhesion processes of Shewanella oneidensis MR-1 to bare hematite, humic acid-coated hematite (hematite-HA), and SiO2-coated hematite (hematite-SiO2) using Quartz Crystal Microbalance with Dissipation (QCM-D). The molecular-level process and mechanism were investigated using in situ Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectrometry. We found that MR-1 formed a rigid bacterial layer on bare hematite. Coating with HA or SiO2 decreased the surface cell density during the initial adhesion stage, and compromised the stability of the subsequent bacterial attachment. The FTIR combined with two-dimensional correlation spectroscopy (2D-COS) analysis showed that C-moieties of polysaccharides dominated interactions in initial adhesion on HA and SiO2-coated hematite. In the longer term, the HA coating hindered the adsorption of amide, but promoted the binding of polysaccharide C-moieties to hematite. We concluded that, in general, both the HA and SiO2 coatings reduced the attachment of MR-1 on hematite. These results advance our understanding of the roles of surface coatings on microbe-mineral interactions, which has significant implications for a series of biogeochemical processes in nature.
